Artif Life Robotics (2004) 8:159-162
DOI 10.1007/s10015-004-0304-x

© ISAROB 2004

ORIGINAL ARTICLE

Andrey A. Loukianov - Hidenori Kimura
Masanori Sugisaka

Implementing distributed control system for intelligent mobile robot

Received and accepted: December 1, 2003

Abstract The control system of a mobile robot has a num-
ber of issues to deal with in real time, including motion
control, mapping, localization, path planning, and sensor
processing. Intelligent reasoning, task-oriented behaviors,
human-robot interfaces, and communications add more
tasks to be solved. This naturally leads to a complex hierar-
chical control system where various tasks have to be pro-
cessed concurrently. Many low-level tasks can be handled
by a robot’s onboard (host) computer. However, other
tasks, such as speech recognition or vision processing, are
too computationally intensive for one computer to process.
In this case, it is better to consider a distributed design for
the control system in networked environments. In order to
achieve maximum use of the distributed environment, it is
important to design and implement the distributed system
and its communication mechanisms in an effective and flex-
ible way. This article describes our approach to designing
and implementing a distributed control system for an intel-
ligent mobile robot. We present our implementation of such
a distributed control system for a prototype mobile robot.
We focus our discussion on the system architecture, distrib-
uted communication mechanisms, and distributed robot
control.

Key words Mobile robot - Control - Distributed system -
CORBA

A.A. Loukianov - M. Sugisaka (I<)

Department of Electrical and Electronic Engineering, Faculty of
Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
Tel. +81-97-554-7831; Fax +81-97-554-7841

e-mail: msugi@cc.oita-u.ac.jp

H. Kimura - M. Sugisaka
The Institute of Physical and Chemical Research (RIKEN),
Bio-Mimetic Control Research Center, Nagoya, Japan

H. Kimura
Department of Complexity Science and Engineering, Graduate
School of Frontier Science, University of Tokyo, Tokyo, Japan

This work was presented, in part, at the 8th International Symposium
on Artificial Life and Robotics, Oita, Japan, January 24-26, 2003

1 Introduction and discussion

Mobile robot controllers are rather complex systems that
have to deal in real time with a number of tasks in order
to allow the robot to operate autonomously. These tasks
include motion control, sensing, planning, navigation, etc.
Robot controllers are usually designed as modular and hier-
archical systems. This makes it easier to realize complex
system functions using a composition of more simple task-
oriented modules. There are numerous works on designing
mobile robot control architectures."* A number of mobile
robot controllers were successfully implemented using pro-
posed architectures.*”’

If mobile robots are to perform useful tasks in open
environments, their control systems should be provided
with high-level intelligent features like natural human—
machine interfaces: speech recognition, face and sign re-
cognition, and other ways of human-robot interaction. The
problem here is that algorithms which may provide these
features are usually very computationally intensive. If these
high-level programs use the same computer which also
handles low-level control and sensing then this will affect
the system performance and worsen the response time of
run-time system components. To avoid this bottleneck, the
control system can be implemented as a distributed one
using a number of computers connected by a network. Then
the computationally intensive tasks can be run on separate
computers or can even be spread between them.

The distributed architecture also offers many benefits,
such as openness, dynamical extensibility, and mobility.°®
The components of a distributed system can be created in
different programming languages, run on different plat-
forms, and interface with existing systems. The system can
be easily extended and configured by adding and removing
components, and this can be done even at runtime. In dis-
tributed systems, wireless networks allow to equip onboard
robot controllers with only critical functions while moving
intensive computational tasks and rarely used procedures to
the stationary off-board computers. This will make indi-
vidual mobile robots cheaper and extend their battery life.

160

This will also make possible the sharing of off-board system
components between a group of robots, thus enabling
tighter robot-to-robot interaction in multirobot systems.

This article reports our approach to designing and imple-
menting a distributed-network control system for an intelli-
gent mobile robot. We present our implementation of the
distributed control system on our prototype mobile robot.
The control system of our robot consists of three computers
connected to a high-speed 100-Mbps network. Distributed
design of the control system allows us to share computa-
tional load between available computers; add, remove, and
replace system components at runtime; and share services
of one component with the others. We discuss the system
architecture, distributed communication mechanisms, and
robot control approaches in the following sections.

2 Control system architecture

From a general point of view, our system architecture fol-
lows a well-established structure.*’ There are two levels of
control built one on the top of the other: the hardware
control level and the robot control level (Fig. 1). The
hardware control level includes a set of procedures for
controlling robot hardware: motors, encoders, sensors,
pan-tilt-zoom cameras, etc. On this level, all hardware-
specific control issues are resolved and presented to the
higher level in an abstract robot state. Motor input voltages
are represented by desired velocities, encoder pulses are
processed to reflect current robot velocity and odometry
status, ultrasonic sensor readings are filtered, and so on.

; Robot control level Speech
{ recognition :
‘ Navigation | Vision
Motion control E l E Fsebitive
Sensor _ .
processing Planning 5
] Robot controller (state, commands) J

Distributed environment

Hardware control level]

! !

Hardware I

Fig. 1. Distributed system architecture

The robot control level includes procedures for dealing
with higher-level control issues from motion control and
sensor data interpretation to navigation, planning, and in-
telligent interfaces. To reduce complexity, these procedures
are realized as a set of task-specific separate modules (com-
ponents) that share the information and services with the
others. On this level, the hardware control level is repre-
sented as a server component that shares with other mod-
ules the information about the current robot state and the
set of commands to control this state. In conventional con-
trol system implementations, the components of the robot
control level are closely integrated between each other to
establish a coordinated basis for robot control.

In the case of a distributed network system there are
several additional issues to be addressed. The tight coupling
between components of the robot control system is no
longer possible because the components are executing on
different computers and do not have easy access to the
internal state of the others. Therefore, the distributed
implementation should introduce loose coupling between
system components where the information is exchanged
only through communication mechanisms. These communi-
cation mechanisms have to be flexible enough to allow sys-
tem components to use different communication strategies
such as broadcasting, one-to-one or one-to-many (server—
client) connections. In our system, we used common object
request broker architecture (CORBA) open distributed
object architecture to achieve loose coupling and flexible
communication mechanisms.

The distributed components and communication
protocols also need to support resource sharing and provide
fast system response in certain cases. Resource sharing
is needed to handle situations when several modules com-
pete for a single resource, for example, to control robot
motions or to move a rotating camera. In our system
we used queues, locking, and priorities to resolve these
problems.

There is also a problem of finding an approach to inte-
grate all distributed components together, making them all
work as a complete system. This requires some form of
central management that will coordinate, direct, and over-
see operation of distributed components in order to execute
desired robot actions and achieve their goals. In our system,
we delegated this role to one or more distributed compo-
nents, called the executive.

3 Communication mechanisms

In this section we discuss the communication mechanisms
we use to implement the distributed system. We used
CORBA architecture and infrastructure to link distributed
modules of the control system together. This architecture is
vendor and platform independent and can be used in a
variety of areas including real-time applications. We used
the omniORB-free implementation of CORBA.

In our system, there were two levels of communication
between our modules: object level and messaging level.

Functionality extension

Methods components
..... n w
calls D
(Component object) Network l lJ I
[
CORBA Library

| Object communication level

Component
(Procedures,
Services, Data)

Synchronization layer

Messaging
level

N /9

Messages

Router
client

neue
objects

Frmmm—mm———————————

Messages

Distributed components

Fig. 2. Distributed communication mechanisms

Figure 2 shows all distributed communication mechanisms
that are available to the module.

The object level allows a component to export its proce-
dures and internal state to the the networked environment.
To access component’s exported procedures and data, other
system components use the CORBA object that provides
interfaces to call procedures and query data. For example,
the robot controller component uses object communication
level to export low-level motor control routines, encoder,
and sensor readings. More advanced or specialized versions
of the robot controller can be developed on top of the
existing controller using its exported procedures and data
without having to deal with complex hardware issues. This
makes the system architecture open and easy to extend.
Therefore, the object communication level is used to
provide the means to extend component functionality and
when tighter coupling between system components is
needed.

A greater extent of information exchange is performed
at the messaging level of communication. The system
components are encouraged to communicate on this level
because it is flexible and it allows the use of various commu-
nication strategies. On this level, system modules communi-
cate by exchanging messages, each one consisting of the
header and the message data. The message header includes

161

information about message context (category), message
identifier, message recipient or sender, message priority,
and message marker. This information is used by system
communication algorithms to handle messages more
efficiently while keeping network use to a minimum.

Messages are sent between modules with the help of two
basic but powerful mechanisms — queues and routers (see
Fig. 2). Queues are communication objects that are used to
receive the incoming messages and sort them according to
their priority for later processing by the recipient. The rout-
ers provide configurable message broadcasting in case there
are many recipients. Queues and routers are exposed to the
distributed network environment through corresponding
CORBA objects. Every queue and router object is given a
unique name identifier that is used by CORBA service
libraries to locate the appropriate queue or router on the
network and deliver messages to them. The module may use
all communication mechanisms or just some of them de-
pending on its purpose within the control system.

Queues receive messages from other distributed compo-
nents on the network through their CORBA queue object
interfaces. The interface of the CORBA queue object is
minimal — it contains only one message reception method.
This method accepts the message from the caller and puts it
into a local queue for later extraction and processing. To
perform its functions, a control system component can cre-
ate as many queues as needed. A static one-to-one commu-
nication channel between two components may be formed
by posting messages to the queue object of the opposite
component. To send a message to the desired queue, the
distributed component uses the CORBA queue client, the
function of which is to find the CORBA queue object on
the network and to call its message reception method. The
queue client uses the CORBA name service library to lo-
cate the desired queue by its name on the network.

Routers in our system provide flexible message broad-
casting and dynamic one-to-one communication channels.
The broadcasting allows a system component to send outgo-
ing messages to any number of system modules. Using this
mechanism, for example, the robot controller can send up-
dates of its state to all modules that need this information.
Other components subscribe for messages that they need to
receive from the router. The component sends outgoing
messages to its router, which then distributes these mes-
sages to all subscribed components.

The router consists of: (a) a CORBA router object used
by other components to subscribe/unsubscribe for broad-
casting and configure message filters; and (b) a dynamic
register of the subscribed components. Similar to the
queues, every router is exposed to the distributed network
environment through the CORBA router object, which is
accessed by subscribing components through CORBA
router clients.

In order to subscribe, a recipient component sends the
router the name of the queue object from which it wishes to
receive messages. After subscription, the component can
also create a set of message selection filters. The router uses
these filters to select or discard outgoing messages based on
the message header information before sending them to the

162

subscribed component. The messages are delivered to the
recipient queues by CORBA queue clients. The router ob-
ject uses CORBA service libraries to check if all subscribed
recepient queues are still present on the network. If the
service library cannot find the recipient queue object on the
network, the register of subscribed components is updated
accordingly.

If the component shares its resources with other distrib-
uted components, there is a problem of serializing access to
this resource. A module can have resources, functions, ser-
vices, or data that cannot be accessed by many modules
simultaneously. To handle this problem, modules use syn-
chronization mechanisms to provide correct sharing. In our
system, these synchronization mechanisms include com-
mand queues, request queues, and resource locking. These
instruments form a synchronization layer around shared
resources of the component.

4 Robot control with distributed components

Components in the distributed system can operate with
little or no supervision from outside. Nevertheless, in order
to operate as a complete control system, the collection of
distributed modules needs to be integrated together. Coor-
dinating, directing, and overseeing the operation of distrib-
uted components in order to achieve control goals requires
some form of central management. In our system, this
management was provided by the so-called executive
component.

The executive component task is to coordinate the work
of other components. The executive communicates with
other modules on the messaging communication level.
Its scripting engine allows the programming of new robot
actions and behaviors (we call them “activities”), and
executes these programmed activities in real time. Robot
activity scripts follow finite state automaton (FSA) seman-
tics and use executive kernel, threading, message process-
ing, and event processing libraries to perform their
functions and state transitions.

The executive kernel and threading library provide
activity programs with the environment in which they can
execute and schedule themselves. In FSA semantics, the
activity execution is represented as a sequence of states and
interstate transitions. Some of these states are predefined
(initialization, termination, suspended, etc.), while other
states are defined by the activity itself. The activity also
defines all possible transitions between its states and the
operations that should be performed during these transi-
tions. The executive kernel schedules activity execution
within FSA framework. The threading library allows activi-
ties to coordinate and synchronize their execution. Running
activities can spawn child activities that can execute sequen-
tially or in parallel with the parent activity.

The message processing library enables robot activity
programs to communicate with distributed system compo-
nents and coordinate their work. The activity can send mes-
sages directly to a component or use the router of executive
module to broadcast messages. Using message filters, the

activity can ask the messaging library to send it an event
when a specific message arrives or it can create a separate
message queue for that purpose. Activity scripts can contact
routers of other components to subscribe for required
messages.

The event processing library binds threading and mes-
saging libraries together and plays an important role in FSA
execution semantics. In our case, events trigger almost all
activity state transitions. The messaging library uses mes-
sage triggers and message filters to signal the arrival of the
message of interest. The threading library uses events when
scheduling activities and when working with timers and
synchronization. The executive component’s kernel handles
all interactions between described libraries and running
activities.

Although in our implementation we use only one execu-
tive component, for the distributed system, it is possible to
include a number of executive components. In this case, a
control hierarchy can be constructed, where each executive
component deals with a limited selection of control prob-
lems on a certain level and reports the results and its status
to the higher level.

5 Conclusions

In this article, we presented our implementation of a distrib-
uted control system. The distributed design provides open
and dynamic framework for realizing mobile robot control.
The distributed design enables sharing of computational
load between available computers to achieve maximum sys-
tem performance when using computationally demanding
control algorithms and intelligent robot-human interfaces.
The system consists of collection of separate executable
task-specific components that communicate between each
other over the network. CORBA-based communication
mechanisms that allow the linkage of system components
together using different communication strategies were
considered. The structure and implementation details of the
executive component, the task of which is to integrate and
coordinate the operation of distributed components, were
discussed.

References

1. Brooks RA (1986) A robust layered control system for a mobile
robot. IEEE J Robotic Autom 2:14-23

2. Connell J (1992) A hybrid architecture applied to robot navigation.
Proceedings of IEEE International Conference on Robotics and
Automation, pp 2719-2724

3. Gat E (1992) Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile robots.
Proceedings of the Tenth National Conference on Artificial
Intelligence pp 809-815

4. Konolige K, Mayers K, Ruspini E (1997) The Saphira architecture:
a design for autonomy. J Exp Theor Artif In 9:215-235

5. Burgard W, Cremers AB, Fox D, et al. (2000) Experiences with an
interactive museum tour-guide robot. Artif Intelligence 114:3-55

6. Martin DL, Cheyer AJ, Moran DB (1999) The open agent architec-
ture: a framework for building distributed software systems. Appl
Artif Intell 13:91-128

